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Abstract. We present numerical as well as analytical results for the reduction of the energy 
gap in the fractional quantum Hall regime due to disorder. The disordered substrate is 
treated perturbatively. It consists of randomly distributed long-range scatterers. It turns out 
that the reduction of the energy gap is determined by the mean value of the fluctuations of 
the potential alone and that it is proportional to the fractional charge of the quasiparticles. 

1. Introduction 

The fractional quantum Hall effect (for a recent review see [l]) is usually explained by 
the fact that at certain densities, the ground state of the two-dimensional electron gas is 
exceptionally stable. The idea of Laughlin [2] was to introduce fractionally charged 
quasiparticles or quasiholes. Slight deviations from a stable density would create those 
quasiparticles or quasiholes. Between the ground state at the stable density and the 
states with quasiparticles or quasiholes, there is a finite energy gap, the ground state is 
incompressible. The energy gap is related to a discontinuity in the chemical potential. 
It was determined experimentally from the thermal activation of the diagonal resistivity 
[3 ,4]  and from magneto-optical measurements [ 5 ] .  Theoretically, the energy gap was 
calculated using various methods (see e.g. [l]). The main problem is that the theoretical 
calculations lead to values of the energy gap which are much larger than the experi- 
mentally determined values. There are several mechanisms for the reduction of the 
energy gap. The main effect is due to the finite spread of the electron wavefunction 
perpendicular to the two-dimensional plane (chapter 2.6 in [l]). Further there is a 
reduction of the energy gap due to Landau level mixing [6] and due to disorder. Recent 
experiments on systems with very high mobilities [4] show that the effect of disorder is 
not negligible. Theoretically the effect of disorder on the energy gap has been discussed 
using different methods. The effect of a single impurity was numerically calculated by 
Zhang er a1 [7] and by Rezayi et a1 [8]. MacDonald eta1 [9] and Gold [lo] gave analytical 
estimates of the reduction of the energy gap due to disorder using a single mode 
approximation. Their results contain parameters that are used to fit the experimental 
data. 

In the following we will calculate the reduction of the energy gap using a perturbative 
approach. Our article is organized as follows. In the following section we give expressions 
for the energy gap and its relation to the chemical potential. In section 3 we introduce 
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two different kinds of substrate potentials that are used in the numerical calculations. 
In section 4 we present the numerical results for the reduction of the energy gap due to 
disorder. The disordered substrate consists of long-range scatterers, e.g. Coulomb 
scatterers or Gaussian scatterers. It turns out that the reduction of the energy gap 
depends for slowly varying potentials of this kind only on the mean value of the fluc- 
tuations of the potential. In section 5 we will present some analytical results to explain 
this behaviour. We will show that the reduction of the energy gap is proportional to the 
fractional charge of the quasiparticles. In section 6 we will compare our results with the 
experimental and theoretical results mentioned above and in section 7 we present 
conclusions. Throughout we will use units where the cyclotron radius is set to unity. 

2. The energy gap 

In the following we will discuss a model of two-dimensional interacting electrons on a 
torus in a strong magnetic field. For details of the model we refer to [ll, 121. The energy 
gap is usually calculated as the sum of the excitation energies of the quasiparticle and 
the quasihole [13]. The excitation energies may be written as 

where Eo(Ns ,  N e )  is the ground state energy of a system with Ns flux quanta and Ne 
electrons. One obtains the energy gap at a filling factorf, = Ne/Ns = q / p  ( q ,  p relative 
prime, p odd and small) from (1) 

GECf,,) = E+ + E - .  (2) 
The energy gap is related to a discontinuity in the chemical potential [13] which is 
introduced using 

so that at a filling factorf, = l/p, one has 

The last estimate in (4) follows, since adding one electron (hole) to the system cor- 
responds to addingp quasi-electrons (quasiholes). This is in fact only true if the quasi- 
particles (quasiholes) are well separated so that the interaction between them might be 
neglected. 

Another way to calculate the energy gap is used for instance in [7-101. Here the 
energy gap is calculated for fixed Ne and A',. This means that neutral excitations are 
taken into account. They are interpreted as magneto-rotons, magneto-excitons or quasi- 
excitons. A quasi-exciton is built out of a quasiparticle and a quasihole and its energy is 
given by (2) as long as the interaction between the quasiparticles is negligible. The 
energies calculated within these approaches are in good agreement with the energies 
that are calculated as described in (2). Magneto-optical measurements [5]  have some 
relation to the picture of neutral excitations. On the other hand, transport measurements 
[4] are more easily related to  charged excitations. Both measurements yield more or less 
the same value for the energy gap. But it is not a priori clear that the effect of disorder 
on different types of excitations is the same. 
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In a small system without disorder the ground state energies at different filling factors 
may easily be calculated numerically. Due to the symmetry of the system, the ground 
state energies are degenerate. By introducing a disordered background potential this 
degeneracy is removed. In the thermodynamic limit, the ground state energy of a system 
at a filling factor fo  remains degenerate. In small systems, the splitting of the ground 
state energy at such a filling factor is small compared to the splitting of the ground state 
energy at a filling factor f2 = N,/(N, k 1) [ l l ] .  The reduction of the energy gap due to 
disorder may be calculated using a degenerate perturbation theory and is given by the 
sum of the reductions of the ground state energies at the filling factors f ? .  To first 
order, one has to calculate the matrix elements of the disordered substrate between the 
degenerate ground states and to diagonalize the resulting matrix. Details may be found 
in [ l l ] .  

3. Substrate potentials 

Walukiewicz et a1 [ 141 discussed the main scattering mechanisms in modulation-doped 
heterostructures. In GaAs-GaAlAs heterostructures at low temperature, the main 
scattering mechanism is the scattering by ionized impurities. The main part of the 
impurities is situated in the doped region of the heterostructure (remote scattering). 
The authors claim that scattering mechanisms such as surface roughness (that is impor- 
tant in Si-MOSFETS) or interface charge scattering do not play a significant role. This 
means that the disordered substrate potential may be written as in [9] 

U ( q ,  d, z )  = 2xe2 exp(-qd)/eq(l + q ~ / 3 ) ~ .  (5b) 

Here V, is the Fourier transform of the substrate potential. The sum in (5a) runs over 
all impurities. RI are the coordinates of the jth impurity projected onto the plane of the 
two-dimensional electron gas (here the xy plane), d, is the distance of the jth impurity 
from the plane. The parameter zo in (5a) describes the z extension of the electron 
wavefunction in a variational Stern-Howard approach (see e.g. [ 151). The coordinates 
R, are distributed uniformly and the distances d, are distributed uniformly between d 
and d + a where d is the spacer thickness and a is the thickness of the doped region. If 
one performs averages, one has to include some correlations in the positions of the 
scatterers to exclude macroscopic fluctuations of the substrate potential. This may be 
done by introducing a structure factor for the distribution of the R, [9]. In the numerical 
calculations described below such correlations are not necessary. 

For comparison we have also used background potentials that consist of an equal 
amount of attractive and repulsive Gaussian scatterers randomly distributed in the xy 
plane. In this case the Fourier components of the substrate are given by 

V ,  = 2 V(-)jexp(-d2q2 - iq .Rj) .  
i 

Potentials of this kind are often used in numerical calculations since they are easily 
calculated and contain only a single parameter d ,  which describes the range of the 
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scatterers. To compare the results with the results for Coulomb scatterers, we will use 
long-range Gaussian scatterers. The parameter d will be chosen to be larger than 1. 

4. Numerical results 

We have calculated the reduction of the energy gap due to a disordered substrate 
potential (5) to first order in a perturbational approach. This was done for small systems 
with periodic boundary conditions. In a first step the multi-particle Hamiltonian with a 
Coulomb interaction between the electrons but without the disordered substrate poten- 
tial was diagonalized within a Hilbert space restricted to the lowest Landau level. Due 
to the symmetry of the system the ground states are degenerate. At filling factors near 
but not equal to q / p  ( p  odd and small) the degeneracy is of the order of the system size. 
The splitting of the ground state energy due to the disordered substrate was calculated 
within the first order of a degenerate perturbation expansion (see e.g. [16]). The exci- 
tation energies in (1) are shifted to lower values. This yields a reduction of the energy 
gap given in (2). Further details may be found in [ 111. 

The substrate potentials consist of Coulomb scatterers as described in section 3. The 
parameters are a = 2; d = 2 , 3  or 4, zo = 0, 1 , 2  or 3 in units of the cyclotron radius. The 
density of scatterers n,, takes the values 0.5,0.75,1,1.5,2. For each triple ( d ,  zo,  nsc) 20 
potentials have been calculated using a usual random number generator for the uniformly 
distributed coordinates R, and the distances d,. 

In figure 1 the reduction of the energy gap in a system with a filling factor 1/3 (five 
electrons, figure l(a))  and 1/5 (four electrons, figure l(b)) is plotted for 1200 different 
substrate potentials as a function of r which is given by 

r* = IV,/* exp(-q*/2). (7) 
9 

r is well known, it is the parameter that describes the Landau level broadening within a 
self-consistent Born approximation (see e.g. section V1.A. in [15]). In the case of slowly 
varying potentials, r describes the magnitude of the potential fluctuations. In our case 
it turns out that the reduction of the energy gap is approximately given by 

A = cfr (8) 
where the constant Cf is roughly 0.7 for a filling factorf = 1/3 and 0.5 forf = 1/5. This 
result does not depend on the size of the system. We have calculated the reduction of 
the energy gap for different system sizes (3, 4, 5 and 6 electrons in the casef= 1/3, 3 
and 4 electrons in the casef = 1/5) and found that the results are essentially the same. 

As long as d is not too small, the result is independent of the parameters d,  a and zo 
that characterize the disordered substrate potential. If d is smaller than the cyclotron 
radius, the fluctuations of the reduction of the energy gap around the value (8) become 
large. This means that the reduction of the energy gap is no longer a function of r alone. 

For comparison we have calculated the reduction of the energy gap for a potential 
that is given by (6). The results are presented in figure 2(a) forf = 1/3 and in figure 2(b) 
forf = 1/5 for 1200 potentials. They are essentially the same as before, the reduction of 
the energy gap is given by (8). In this case we have chosen d = 2.5,3.5 or 4.5 and nsc as 
above. For smaller values of d the fluctuations around the value (8) become too large. 
For each pair (d ,  nsc) 80 different random potentials were calculated. In general the 
fluctuations around the value (8) are larger for f = 1/5 than for f = 1/3. The reason is 
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Figure 1. The reduction of the energy gap versus r for 1200 different potentials that consist 
of Coulomb scatterers. The density of the scatterers is varied between 0.5 and 2,  d is varied 
between 2 and 4, zo is varied between 0 and 3, and a = 2. The filling factor is (a)f = 1/3 and 
( b )  f =  1/5. Energies are given in units of e ’ / € / ,  where 1 is the cyclotron radius. 

that the range of the fluctuations of the substrate potential has to be compared with a 
typical extension of the fractionally charged quasiparticles or quasiholes in space. They 
are smaller for f = 1/3 than for f = 1/5. 

5. An analytical estimate of the reduction of the energy gap 

The reduction of the energy gap may be calculated analytically using (4). The energies 
E,(Ns, Ne k 1) are highly degenerate in a system with a homogeneous background. The 
splitting of the degeneracy due to a disordered background may be calculated within a 
perturbational approach. This was done in [12]. It turns out that the additional electron 
or hole behaves as a single particle in the lowest Landau level moving in an effective 
potential. It may be described by an effective single particle Hamiltonian. The effective 
potentials are given by (equations (3.9) and (3.19) in [12]) 

for the additional electron and 
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Figure 2. The same as in figure 1 for 1200 different potentials that consist of Gaussian 
scatterers with an amplitude V .  d is varied between 2.5  and 4.5. The energies are given in 
units of V .  

V _  ( x )  = V ,  exp(ik * x )  (10) 
k 

for the hole. vk are the Fourier components of the substrate potential and t k  are related 
to the static structure factor s, of the ground state at the filling factorfo 

skis related to the Fourier transform of the pair correlation function g ( r )  (see e.g. [17]) 
which has in the thermodynamic limit the general analytic form [18] 

tk = (11) - + N e 6 k , 0 1  exp(lk12/2)* 

g ( r )  = 1 - exp(-r2/2) + 2exp(-r2/4) C' (c, /m!> (r2/4>. (12) 
m 

where the prime at the sum indicates that it is restricted to odd m ,  c~~ = 0. Using this 
expression, one might calculate sk and t, to obtain finally 

V ( X  - xr) [a(  /x'  I ) / (  1 -fo)  + (1 + f o ) S ( x ' ) ]  d ' x '  (13) 

V -  ( x )  = V ( x - x ' ) [ ~ ( l ~ ' I ) / f o  - f o S ( ~ ' ) ]  d2X' J 
where a(r )  is given by 

a(r> = - (2ir-1 Z r  (c, /m!)L, (r2)  exp(-r2/2) 
m 

and L,(z) are Laguerre polynomials. 
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One obtains now an upper bound for the reduction of the energy gap 

A G (l /p) 1 min V ,  (x) + min V -  (x) 1 .  (16) 
X X 

This upper bound is a good estimate of the reduction of the energy gap in the case of 
substrate potentials that consist of long-range scatterers. If the range of the scatterers is 
long compared to the range of a(r ) ,  one may replace a(r )  in the integrals in (13) and (14) 
by an appropriate multiple of 6(x). Using the first sum rule for the coefficient cm given 
in [ 181 

one obtains 

V+(X) = V(X) v- (x) = -V(x). (18) 

A s (l /p) I max V(x) - min V(x) 1 .  (19) 

Using these expressions, the estimate in (16) may be written as 

X X 

Unfortunately it is not possible to give a good estimate of the right-hand side of (19) for 
the potentials used for the numerical calculations. The reason is simply that the best 
estimate of the maximum of a random potential is the maximum of all potentials of the 
ensemble. This must be calculated introducing correlations in the distribution of the 
positions of the scatterers as discussed above and it is therefore almost impossible to 
obtain the maximum of the ensemble. Consequently one has to use another class of 
bounded random potentials that do not contain macroscopic fluctuations. In the fol- 
lowing we will use potentials that consist of spherically symmetric scatterers with the 
shape u ( r )  on a lattice L with randomly distributed amplitudes 

u(r)  should satisfy the following conditions: 

(i) u ( r )  decays monotonically, u(r )  2 u ( r ' )  if r s r' 
(ii) u(0)  is finite. 
(iii) u(r)  is integrable in R2. 
( i v ) ~ , , , [ u ( ~ y ~ )  - u(lx-y/)]  a o f o r a l l x .  

The last condition is used below to obtain an estimate of the maximum of V(x). It is valid 
for a large class of shapes u(r)  if the range of u ( r )  is smaller than or comparable to 
the lattice constants of L. For some u(r )  including Gaussian scatterers (iv) is valid 
independently of L.  

The distribution of the amplitudes should be bounded. We choose the amplitudes to 
be distributed independently according to 

P(V,) = 4[6(Vy - v) + 6(Vy + V)]. (21) 
r may be estimated by the square root of the average of r2 

Here lLl denotes the number of scatterers andA denotes the area of the system. In the 
case of long-range scatterers, (22) may be written as 
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Because of condition (iv) the right-hand side of (19) may be bounded from above using 

and one obtains 

A similar result may be obtained for different bounded distributions of V,. The essential 
point is that the substrate potential is bounded and long range and that the potential 
fluctuations do not become macroscopic. The main result contained in (25) is that the 
constant Clip in (8) is proportional to l / p ,  i.e. to the fractional charge of the quasi- 
particles. Because of the positivity of u(r )  it is actually somewhat larger than 2/p. This 
result agrees with the numerical results presented above and helps to understand them. 
Jn particular (25) shows that the reduction of the gap for p = 5 is a factor 3/5 smaller 
than the reduction of the gap forp = 3. The numerical result for this ratio is roughly0.7. 
The difference is easily explained by the fact that in the derivation of (25) we used the 
fact that the range of the scatterers is large compared to the range of a(r) .  As the range 
of g ( r ) ,  the range of a(r )  is proportional top'/*. Thus the ratio of the ranges of u(r )  and 
g(r)  becomes smaller for larger values of p and the corrections to (25) are larger. 

6. Comparison with experimental and other theoretical results 

In the case of long-range scatterers, r is related to the single-particle relaxation time zSp 

= h/z,,. (26) 

The strength of the disorder in a heterostructure is usually described by the mobility ,U 

which is related to the mean scattering time t,, through 

z,, = m e f f d e .  (27) 

Unfortunately zSp = z,, holds only in the case of &scatterers. Recently Gold [ 191 gave an 
extensive discussion of the various scattering mechanisms in two-dimensional electronic 
systems and their effect on this ratio. It turns out that the ratio t,,/tSp may be very 
large in the case of high-mobility GaAs-GaAlAs heterostructures. Therefore a direct 
quantitative comparison of our results with experiments is not possible. On the other 
hand (8) shows that for large magnetic fields, where the perturbative approach is 
valid, one obtains a constant reduction of the energy gap. This is consistent with the 
experimental results for the energy gap at different mobilities [3,4]. 

Although the method to calculate the energy gap is different, we may compare our 
results with the results of Zhang et a1 [7] who calculated the reduction of the energy gap 
due to a single impurity. They diagonalized the Hamiltonian of four (toroidal geometry) 
to six electrons (spherical geometry) in the presence of a single Coulomb scatterer with 
a charge ze. For small z ,  the results are consistent with a linear behaviour of the reduction 
of the energy gap as a function of z .  But the single impurity is localized in the plane 
where the electrons move, i.e. d = 0, and therefore a quantitative comparison is not 
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possible. The same problem occurs if one tries to compare our results with the results of 
Rezayi and Haldane [8]. Analytical results for the reduction of the energy gap due to 
disorder were obtained by MacDonald et a1 [9] and by Gold [lo]. In both cases a single- 
mode approximation is used and the energy gap is not calculated as described above. 
On the other hand their results are consistent with a reduction of the energy gap 
proportional to r. 

It should be mentioned that all the theoretical results concerning the reduction of 
the energy gap due to disorder are valid only for large enough magnetic fields. They 
should not be used to explain the collapse of the gap at lower magnetic fields (5  T for 
f = 1/3) since at low magnetic fields higher Landau levels become more important. 
Further at low magnetic fields (slightly above 5-6 T )  the low lying excitations may be 
spin-reversed (see e.g. [l]) and are not well described by the magneto-roton theory used 
in [9, 101. In the numerical calculations mentioned above [7,8] the spin is not taken into 
account. 

7. Conclusions 

We have presented numerical as well as analytical results for the reduction of the energy 
gap in the fractional quantum Hall effect due to disorder. The results were obtained by 
first diagonalizing the Hamiltonian restricted to the lowest Landau level and by treating 
the disordered substrate potential as a small perturbation. If the substrate potential 
consists of long-range scatterers, the finite extension of the quasiparticle or the quasihole 
in space plays no significant role. They behave as electrons with a fractional charge. The 
reduction of the energy gap is determined by the mean value of the fluctuations of the 
potential alone as given in (8) and is proportional to the fractional charge of the 
quasiparticles. 

Our result may be generalized to the case of spin-reversed excitations and to higher 
Landau levels. In these cases the shape of the function a(r)  in (15) is changed [20], but 
in the case of long-range scatterers the shape of a(r)  plays no significant role. This means 
that our results may be carried over to these cases. Nevertheless it should be noted that 
these cases are relevant for lower magnetic fields as pointed out above, so that higher 
orders of the perturbational series may become relevant. Higher orders may be treated 
using the effective potentials introduced in [20] and one should not expect a significant 
difference to our results. However, the collapse of the gap at low magnetic fields cannot 
be described within a perturbational treatment. 
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